2.2.1 Exact Algorithms................................. 4

نویسنده

  • Isaac Newton
چکیده

2 Background 2 2.1 NP-hard Combinatorial (Optimization) Problems . . . . . . . . . . . . . . . 2 2.2 Algorithms for Attacking COPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Non-Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.3 Comparison of the Two Extremes . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Stochastic Local Search (SLS) for Attacking COPs . . . . . . . . . . . . . . . . . . 5 2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.2 What is SLS algorithm? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.3 Walks on COP Fitness Landscape . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.4 Algorithmic Template M + Configuration φ . . . . . . . . . . . . . . . . . . 9 2.3.5 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Further Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion Planning, Reactive Methods, and Learning Techniques for Mobile Robot Navigation

2 State of the art in robot motion algorithms 3 2.1 Global path-planners . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Grid methods (cell decomposition) . . . . . . . . . . . . . 3 2.1.2 Roadmap methods . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Local and reactive algorithms . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Potential Field Methods (PF) . . . . . . . . . . . . ....

متن کامل

Literature Review

2 Coevolution 4 2.1 Competitive Coevolution . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Just Two Individuals . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 One Population . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 More than One Population . . . . . . . . . . . . . . . . . 5 2.1.4 Competitive Fitness Algorithms . . . . . . . . . . . . . . 6 2.1.5 Analysis . . . . . . . ...

متن کامل

Security in GSM

1. A BRIEF INTRODUCTION TO GSM .............................................................................................................2 1.1 MOBILE STATION................................................................................................................................................3 1.2 BASE STATION SUBSYSTEM ...................................................................

متن کامل

Heuristic and exact algorithms for Generalized Bin Covering Problem

In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.

متن کامل

Algorithms for Testing and Embedding Planar Graphs

2 Embedding graphs into planarity 3 2.1 embedding algorithms donot use PQ-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 A planarity embedding algorithm based on the Kuratowski theorem . . . . . . . . 3 2.1.2 An embedding algorithm based on open ear decomposition . . . . . . . . . . . . . . 3 2.1.3 A simplified o (n) planar embedding algorithm for biconnected graphs . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008